Research Interests

"I have yet to see any problem, however complicated, which, when you looked at it in the right way, did not become still more complicated." -- Poul Anderson

Theories of Gravitation: Does General Relativity Need Modification?  

Einstein's general relativity celebrated its centenary in 2015. Described by S. Chandrasekhar as "probably" the most beautiful theory, general relativity has passed all observational and experimental tests thus far with flying colors. To quote from the book The Perfect Theory  by Pedro Ferreira published in 2014, "One thing about general relativity that has always puzzled me is how, despite being around for almost a century, it continues to yield new results."

 

 

Indeed, general relativity has a firm mathematical foundation based on Lorentzian geometry. The same cannot be said for many modified theories of gravity, which aim to explain the accelerated expansion of the Universe without including a cosmological constant (some also try to explain "dark matter"). It is not difficult to propose a new theory of gravity, what is difficult is to propose a healthy  theory. More often than not, attempts to modify general relativity resulted in pathological features such as energy not bounded from below (thus resulting in severe instability), wrong sign of kinetic energy (so-called "ghost"), ill-posed Cauchy problem (namely, given an initial condition, we cannot uniquely solve for the future evolution of the system -- which means that we cannot do physics) or even the  existence of arbitrarily small closed timelike curves (thus violating causality). 

 

I am interested in further understanding general relativity and appreciating its subtleties; I am also interested in the mathematical structures of modified gravity, and had spent some efforts in uncovering the problems that seem to plagued some teleparallel theories like f(T) gravity, as well as massive gravity. I am especially interested in theories with torsion. General relativity is, by construct, torsion-free, but a given connection has in general, in addition to curvature, also torsion and non-metricity. Geometries with these quantities are rich and interesting, and might offer some insights into gravitational physics. If indeed gravity is only the effect of spacetime curvature, then it would also be interesting to understand why Nature chooses not to make use of torsion and non-metricity. How rigid is general relativity?

Black Holes: Information Paradox, Quantum Information, and Holography
 

A black hole is a region of spacetime with curvature behaving in such a way that nothing, not even light, can escape from within. The boundary of no return is called an "event horizon". (Note that gravity is not necessarily strong at the event horizon!). There are a lot we don't understand about black holes, both at the astrophysical level and the theoretical level. The former includes questions like: when did supermassive black holes first form in the Universe, and did they play any role in the reionization of the Universe? No doubt with the recent discoveries of gravitational waves by advanced LIGO, a new era of astrophysics has begun. I am, however, more interested in the theoretical aspects.

A notoriously difficult problem in theoretical physics is the so-called "information paradox": what happens to the information about the stuff that falls into a black hole? Since Hawking radiation makes a black hole smaller and smaller, and (possibly) eventually disappears, the fear is that information is lost, which seems to contradict a central tenet of quantum information ("unitarity"). There are many proposed resolutions to this paradox in the literature, but none seems convincing. The problem was made worse when it was claimed in 2012 that if information leaked out from a black hole by being entangled in the Hawking radiation, then the event horizon of a black hole at late time becomes a very high energy curtain of "firewall", completely contradicting our prior knowledge about black holes.

An old black hole might be surrounded by a blazing firewall (Credit: Equinox Graphics/SPL)

I am interested in the properties of Hawking radiation for different black holes, and the information paradox. I have investigated a particular proposal by Harlow and Hayden, concerning the enormously long time required to decode Hawking radiation, and how this might evade firewalls. In addition, I have also written a comprehensive review on the remnant scenario -- the possibility that black holes eventually stop evaporating. As part of the effort to understand black hole evaporation, I have also been involved in the research of "moving mirrors" in (1+1)-dimensional flat spacetime, which serves as a toy model for an evaporating black hole.

Another important theoretical aspect of black hole physics is in the context of holography, which is also known as the AdS/CFT correspondence (though the term "holography" is arguably more general and thus more appropriate -- most applications are not strictly about CFT). According to holography, the physics of a gravitating system in anti-de Sitter  (AdS) spacetime is completely equivalent to another physical system -- a quantum field  theory without gravity -- that lives on the boundary of the AdS spacetime. This opens a door to understand gravity using ordinary quantum field theory (even systems one can study in the lab, such as superconductor, cold atoms, and quark-gluon plasma) and vice versa.

Holography (Credit: Tom Brown)

I am interested in a few aspects of holography. Firstly, being a nontrivial correspondence between two completely different physical systems, there must be some underlying consistency conditions to holography. Uncovering these are important, and might help us to understand how general holography is -- does it work for any consistent theory of gravity in asymptotically AdS spacetimes, or does it require one to be able to embed the theory into string theory?

Quantum information has recently been incorporated into holography. This was partly motivated by the attempts to understand the information paradox. There are two important concepts involved: namely holographic entanglement entropy (HEE) and holographic complexity (HC). Essentially, HEE is related to the content of information encoded in the subsystem (for example, information starts to leak out from a black hole when the HEE of the Hawking radiation starts to decrease, during the so-called "Page Time"). On the other hand, HC has to do with how difficult it is to perform an operation. In the context of Hawking radiation, this is related to the difficulty of decoding the highly scrambled information from the Hawking radiation. I am interested in the quantum information aspects of holography, and what these might teach us about spacetime geometries, and possibly even about quantum gravity. 

Information escaping a black hole
 (Credit: NewScientist)

I presented as the co-chair of the parallel session on black hole information loss  paradox during the 2nd LeCosPA International Symposium “Everything about Gravity”, which was held in National Taiwan University, Taipei, December 2015.

Cosmology: Physics at the Largest Scale
 

I have always been fascinated by the cosmos ever since I was a child. I still vividly remember my excitement when my father gave me a pair of binoculars as birthday present when I was nine years old. I especially enjoyed looking at the Pleiades cluster from the window of my bedroom then.

The Universe we live in is a remarkable place. For one thing, it is not only expanding but accelerating, and no one is quite sure why. Perhaps it is just a cosmological constant. Maybe it is the result of our over-simplification of cosmological models, and one really has to take inhomogeneities into account. Maybe it is something else entirely, a mysterious form of "dark energy". Maybe, after all, general relativity has to be modified, and the new theory will be able to explain the accelerated expansion in a "natural" manner. It is frustrating but at the same time exciting, that about 95% of the matter-energy content (so-called "dark sector") of the Universe remains unknown: all those remarkable things like planets and stars are nothing but 5%! What rich physics await us in the dark sector? To quote Carl Sagan, “Somewhere, something incredible is waiting to be known.”

Also, as Einstein once remarked, "The most incomprehensible thing about the world is that it is comprehensible." Indeed, it is very impressive that the human species managed to figure out the big picture of the history of the Universe, in only a couple of centuries since the beginning of modern science. Of course, there are a lot more to understand, but what we do know are already quite impressive!

Cosmic Epochs
(Credit: NASA, ESA, and A. Field (STScI))

From high precision observations, we know that the Universe is incredibly flat, and that its temperature distribution (of the Cosmic Microwave Background) is extremely uniform. These imply that the Universe started off in a very special initial condition. Not so surprising -- of course it makes sense for the initial condition to be relatively special, since entropy increases with time (the 2nd law of thermodynamics). Understanding why entropy is low in the beginning  is a difficult but -- at least to me -- an important problem. Many would agree that cosmic inflation -- an epoch during which the Universe increased its size exponentially -- played a crucial role in this (though maybe only a partial role), but the underlying mechanism for inflation remains unknown. In fact, if we trace the history of the Universe far back enough, we would eventually reach a time when quantum effects can no longer be omitted, and we have to face the Big Bang singularity seriously. In the realm of quantum cosmology, much works remains to be done.

天文物理是最浪漫的科学。她有严谨理性的一面:我们或持笔计算光线如何在接近黑洞时偏离,或在高山上了无人迹的天文台里做观测,有点像隐居的修道人想一窥宇宙的真谛;但是也有人文感性的一面:我们躺在沙滩上用绿激光描绘出星座,说着古人的神话故事,倾听彼此的心声。星--系--心。天文的路,既是思想的奔驰,更是心的感受、性情的陶冶。仰头观星;低头沉思。我们不过是宇宙中的过客,地球也只是茫茫星海中的一粟;   凡事顺其自然,但绝不听天由命。

物,虚空所生;心,何须染尘。